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Abstract

Conformation of polymer chains strongly confined in a narrow channel space was studied over a broad range of polymer volume fractions

f using lattice Monte Carlo simulations. The longitudinal component of the chain dimension decreased in a power law of ,f21 as f

exceeded the overlap volume fraction. The conformation changed from the one extended along the channel to a random coil. The change

occurred without much overlap between adjacent chains. As the conformational transition was completed, the chains started to penetrate each

other. Contraction of the chains became more gradual, and eventually the longitudinal component of the chain dimension approached that of

the unconfined chains with the overall chain dimension being smaller than that of the unconfined chains. Predictions of the scaling theory

were thus confirmed with additional detailed information on the state of confined chains in each regime of characteristic f dependence of

chain dimensions.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer chains confined to a channel-like pore are found

in many systems. Protein channels of a lipid bilayer provide

such environment [1–3]. Widely used porous silica such as

silica gels and controlled pore glasses [4] has pore structures

that are closer to the channel geometry rather than to the slit

geometry. Partitioning of polymer chains between a narrow

pore and its surrounding unconfined space underlies size

exclusion chromatography. Its high-concentration version

that utilizes high osmotic pressure of semidilute solutions

has demonstrated usefulness in separation of polymer by

molecular weight [5,6] and chemical composition [7].

Thermodynamics of polymer solutions over a broad

range of the concentrations, confined in a slit space or in a

channel-like pore, were considered by Daoud and de Gennes

using scaling theory [8]. However, their discussion about

the chain conformation in the channel led to an incon-

sistency that the volume fraction be greater than unity.

Subsequently, Brochard and de Gennes [9] corrected the

mistake, but the correction was limited to molten polymers

in the channel. This situation is also described in de Gennes’

textbook [10]. Recently, Lal et al. [11] extended the

correction to solutions.

Although the scaling theory on the confined polymer

solutions was presented long ago [8], many predictions of

the theories have not been confirmed or disproved in

experiments or computer simulations. For instance, we do

not know whether the confined chain is expanded or not,

especially at high concentrations or in the melt. Experi-

mental investigations on the state of confined polymer

solutions have been plagued by a lack of model systems

suitable for verification of the scaling theory and by

questions on reliability of extracting the chain conformation

from the experimental data. A Monte Carlo simulation study

would be an appropriate method to clarify these ambiguities

and test the predictions of the scaling theory.

Lattice and off-lattice Monte Carlo simulations in a

channel space have been conducted, mostly for a single

chain [12–15]. Contraction of confined chains with an

increasing concentration was observed in the slit geometry

[16–18]. The contraction was also observed in the channel

geometry [19], but the confinement was not sufficiently
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strong to cause the chain to adopt an extended conformation

as expected at low concentrations. A thorough analysis of

the chain conformation in solutions confined in the channel

has not been performed.

This paper is organized as follows. The first part reviews

the most recent form of the scaling theory on polymer

chains confined to a pore of channel geometry in a broad

range of confinement strengths and polymer volume

fractions, with additional remarks of our own on the chain

dimensions. After describing the procedure of lattice Monte

Carlo simulations, we will present the results on the

dimensions of chains strongly confined to channels over a

broad range of volume fractions. The results in different

regimes of volume fraction will be analyzed in the light of

the scaling theory.

2. Scaling theory of polymer solutions confined in

channels

We consider linear chains consisting of N monomers of

size b: Properties of confined polymer solutions in channels

can be well understood using the phase diagram illustrated

in Fig. 1 [8]. The x axis is R0=d; the confinement strength,

where R0 ø bN3=5 is the dimension of an isolated polymer

chain in the bulk solution, and d is the channel width. The y

axis is R0=j; where j is the characteristic length in the bulk

solution that has the same volume fraction f as that of the

confined solution. In dilute solutions, the characteristic

length is the mean distance between nearest pair of polymer

chains. In semidilute solutions, j is equal to the correlation

length in monomer density fluctuations, j ø bf23=4:

The highest possible volume fraction is f ¼ 1 in the melt

in which j ø b: The smallest possible pore size is the

monomer size b: Then, the maximum is R0=b ø N3=5 for

both x and y in Fig. 1. The scaling theory divides the

available space of x and y into five regimes, I through V

[11]. Below we review the theoretical predictions that lead

to the above diagram and discuss the chain conformation in

each of the regimes.

Regime I is an unconfined dilute polymer solution.

Each polymer chain is a self-avoiding walk, and its

dimension R is given as R ø R0: Regime II is an

unconfined semidilute solution. The crossover from

regime I to regime II occurs when f exceeds the bulk

overlap volume fraction fp
b ø N24=5: In regime II, we

have the well-known result

R ø bN1=2f21=8 ð1Þ

Regime III is a dilute solution confined in a narrow pore.

The crossover from regime I to regime III is specified by

line CCx which is d ø R0: The latter view is an

oversimplification of the real situation, as pointed out

by van Vliet et al. [20]. An instantaneous conformation

of a polymer chain is not spherical, but is rather

approximated by an ellipsoid. The crossover region

from the unconfined chain to the confined chain can be

divided into a few sub-regimes: With a decreasing

channel width d; the chain first aligns its longest axis

along the channel axis, and then upon a further decrease

in d; the chain contracts first in the direction perpen-

dicular to the channel axis without much expansion in

the parallel direction, followed by expansion in the

parallel direction. As a general rule, the crossover from I

to III occurs at around x ¼ R0=d ¼ 0:5 [20]. However, we

will adopt here the simpler view mentioned at the

beginning of this paragraph.

In regime III, each isolated chain in a narrow channel

adopts a plug-like conformation extending along the

channel, which Daoud and de Gennes called a cigar [8].

The polymer chain is a train of spheres of diameter d;

and, within each sphere, the partial chain adopts the

conformation of an excluded-volume chain. Therefore,

longitudinal dimension of the chain is given as

Rk0 ø bNðb=dÞ2=3 ð2Þ

We use k and ’ in the subscript to denote the chain

dimension in the directions parallel and perpendicular,

respectively, to the channel axis. One-dimensional nature is

evident in the relationship of Rk0 , N:

The crossover from the dilute solution of one-dimen-

sional cigars (regime III) to a semidilute solution of

touching cigars (regime IV) occurs at the overlap volume

fraction in the channel, fp
ch ø Nb3=ðRk0d2Þ; which yields

fp
ch ø ðb=dÞ4=3 ð3Þ

Note that fp
ch is independent of N: Eq. (3) gives line CM,

Fig. 1. Phase diagram for polymer chains consisting of N monomers of size

b confined in a channel of width d: The x axis expresses the confinement

strength, and the y axis gives a measure of polymer volume fraction f

through the characteristic length j: Either the overall dimension of the

polymer chains or the longitudinal dimension is indicated in each of the five

regimes, I through V. Volume fractions at some regime boundaries are also

indicated.
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x ø y; in Fig. 1. One can find that, on CM, j in the bulk

solution of the same f is equal to d: As soon as the cigars

begin to touch each other, j is already smaller than d:

Therefore, in a confined semidilute solution in the channel,

there is only one isotropic correlation length. In the slit, in

contrast, the correlation length is different between the

directions parallel and perpendicular to the slit walls when

confined chains start to overlap within the slit.

Now we consider narrowing the channel in regime II.

The onset of confinement with a decreasing d is somewhat

delayed at higher polymer volume fractions. Dashed line

CA demarcates regime II from regime V in which the

overlapping chains experience the confinement effect. Line

CA is not vertical, since the chain contraction at higher

volume fractions eases the confinement strength. The line,

given by y ø x6; is determined by d ø R; where R is given

by Eq. (1). At point A, x ø R0=ðbN1=2Þ ø N1=10 or d ø
bN1=2:

There is another crossover line CB, which was absent in

the first discussion by Daoud and de Gennes [8]. The

presence of point B on line MyM was pointed out by

Brochard and de Gennes [9]. It was explained as follows: On

line MyM, j ø b: At My, one has a three-dimensional melt,

therefore R ø bN1=2: At M, in contrast, the chain is fully

extended in the channel of width d ø b; and therefore R ø
bN: The difference between these two expressions of R is

also manifested by the difference in the internal filling

volume fraction, fint; which is the volume fraction of

the monomers on a given chain over the volume subtended

by the chain. At My, fint ø Nb3=ðbN1=2Þ3 ø N21=2 , 1;

whereas at M, fint ø 1: The chains penetrate each other to

bring the total volume fraction to unity at My, but the chain

cannot penetrate each other at M. They can only be packed

tightly head-on. The crossover point B does not coincide

with A; At A, fint is still around N21=2:

At B, the confined chain in the channel has Rk ø bN1=2

and R’ ¼ d: Then, by requiring fint ¼ Nb3=ðRkd
2Þ ø 1; one

finds that d ø bN1=4 gives B. Therefore, x ø N7=20 at

B. Between A and B, Rk is held unchanged at bN1=2: If

this Rk continues between B and M, then fint . 1; an

impossible situation. Therefore, on line BM, the longi-

tudinal dimension of the chain will be perturbed. Chains will

start to segregate and expand in its longitudinal dimension

as Rk ø Nb3=d2 to maintain fint ø 1:

The above discussion can be extended to solutions [11].

Line CB divides the semidilute confined solutions into two

regimes: regime IV in which cigars touch each other but

do not penetrate, and regime V in which cigars penetrate

each other. In regime V, Rk ø bN1=2f21=8 and R’ ø d: The

crossover volume fraction on line CB, fpp
ch ; can be found by

requiring fint ø Nb3=ðd2RkÞ ø f; with Rk given just above,

which leads to

fpp
ch ø ½Nðb=dÞ4�4=7 ð4Þ

or y ¼ x12=7 for line CB.

The chain contraction in regime IV is found by requiring

that the chains do not penetrate

Rk=Rk0 ø ðf=fp
chÞ

21 ð5Þ

where Rk0 is given by Eq. (2). The same relationship can be

found using the scaling function. The chain dimension Rpp
k

at fpp
ch can be readily obtained, using Eqs. (4) and (5), as

Rpp
k =Rk0 ø ðfpp

ch =f
p
chÞ

21 ø ðN3=5b=dÞ220=21 ø ðR0=dÞ
220=21 ð6Þ

A summary of the chain dimensions in the five regimes and the

crossover volume fractions is given in Fig. 1. The dimension is

R when unconfined (I, II), and Rk when confined (III, IV, V).

Increasing the polymer volume fraction in a channel of a

given width amounts to moving a point along a relevant

vertical line in Fig. 1. One readily notices that, unless the

channel is extremely narrow, the confined solution will

undergo a crossover from regime III to IV, and then into

V. Only when the channel is extremely narrow, the solution

will not enter regime V.

The diagram can be used to predict the equilibrium of a

solution of polymer chains between a narrow channel and

the unconfined space [8]. At sufficiently low concentrations

in the solution exterior to the channel, the chains find it

difficult to enter the channel. With an increasing concen-

tration, j decreases in the exterior. When j becomes smaller

than d; polymer chains will rush into the channel (weak-to-

strong penetration transition).

We now compare Rk of polymer chains in the channel,

slit, and bulk. We assume that the chains are strongly

confined in the channel or in the slit, but d . bN1=4: In the

slit, Rk is the chain dimension in the direction parallel to the

slit walls. In the bulk, Rk is taken in any direction. Fig. 2 is a

schematic drawing of Rk; reduced by b; as a function of f in

a double logarithmic scale for the chains in the three spaces.

In the slit, as f exceeds fp
sl ø ðb=dNÞ1=2 [9], higher than

fp
b ø N24=5; chains contract as two-dimensional chains until

f reaches fpp
sl when the longitudinal correlation length

becomes comparable to d: Beyond fpp
sl ; Rk decreases as in

the bulk. It is interesting to see that fpp
sl ø fp

ch; polymer

chains in the channel do not feel the presence of other chains

until such a high volume fraction is reached. The channel

extends the polymer chains most and delays the onset of the

contraction most. The rate of contraction is greater in the slit

than it is in the bulk, and even more so in the channel to

catch up with a slowly decreasing bulk dimension.

3. Simulation procedure

Monte Carlo simulations were conducted for self-

avoiding walks on a cubic lattice. Monomers (beads) of

polymer chains can occupy lattice sites in a box of Lx £

Ly £ Lz in x; y; and z directions with Lx ¼ Ly and Lz ¼ 4096;

where the unit length is a lattice spacing ðb ¼ 1Þ: Four walls

are at x ¼ 0 and Lx þ 1; y ¼ 0 and Lx þ 1: A periodic
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boundary condition applies to the z direction. The channel

width is d ¼ Lx þ 1: No interactions were assumed for the

beads except for no occupancy at already filled sites or at

walls. Polymer chains consisting of N beads with N ¼ 1000

and 2000 were generated in either a straight or a random-

coil conformation and moved according to Metropolis rule

[21] and reptation. It was decided that the system had

reached an equilibrium when the ensemble average of the

radius of gyration exhibited no discernible decreasing or

increasing trend over 108 trial moves per chain. The box size

used in the present study is Lx ¼ 11; 13, and 17 for N ¼

1000 and Lx ¼ 17 for N ¼ 2000: The ratio of Rg0 to d is

often used to express the confinement strength for a single

chain, where Rg0 is root-mean-square radius of gyration in

unconfined space. The values of Rg0=d are 5.30, 4.54, 3.53 in

channels of Lx ¼ 11; 13, and 17, respectively, for N ¼

1000; and 5.32 in the channel of Lx ¼ 17 for N ¼ 2000:

To characterize the anisotropic chain dimensions, four

quantities were calculated: R2
k and R2

’; the z and x-

components of the mean square end-to-end distance; R2
gk

and R2
g’; the z and x-components of the mean square radius

of gyration. The x-components are actually the mean of the

x and y-components of the respective dimensions. We use

Rk;R’;Rgk; and Rg’ to denote their root mean squares. For

the rest of the paper, Rk and R’ mean the end-to-end

distances, not just anisotropic chain dimensions in general

as used in Section 2.

Sampling of chain dimensions started after equilibration.

The four averages were calculated over the chains in the

ensemble every 106 trial moves, and then their long-time

averages were calculated. The number of trial moves needed

for reliable averages were 9 £ 109 for a single chain of N ¼

1000 in Lx ¼ 17 to 3.8 £ 1011 for 200 chains of N ¼ 2000 in

Lx ¼ 17: Two runs of simulation were conducted for N ¼

2000 in Lx ¼ 17; starting from different initial configur-

ations at each of 16 different volume fractions. The relative

difference of Rk or Rgk between the two runs was less than

1%. In some of the figures in the present paper, two symbols

are shown at each of these f; but they are hardly

distinguishable. The relative difference in R’ or Rg’

between the two runs was less than 0.1%.

For reference purposes only, we also performed lattice

simulations for single chains of different lengths (N ¼ 100;

200, 500, 1000, 2000, 4000, 7000, and 10000) in channels of

different widths (Lx ¼ 6 to 19 for N ¼ 100;Lx ¼ 7 to 70 for

N ¼ 10000). Their root-mean-square end-to-end distances

R0 in unconfined space and Rg0 are listed in Table 1. The

purpose of this part of simulation is to obtain R2
k0=R

2
gk0 under

various confinement strengths, where Rk0 and Rgk0 are the

values of Rk and Rgk; respectively, of a confined single

chain.

4. Results and discussions

Fig. 3 shows changes in Rk;Rgk;R’; and Rg’ with f for

N ¼ 2000;Lx ¼ 17: The pattern is similar for the other three

combinations of N and Lx studied here. The change in the

longitudinal dimension of the chain clearly gives three

regimes that are identified as regimes III through V. In

regime III, all of the four dimensions remain unchanged.

In regime IV, the two longitudinal dimensions decrease

steeply as f21 and gradually in regime V. We find that

d . bN1=4 for all of the four systems, hence we expect to see

a crossover from regime IV to regime V according to the

diagram in Fig. 1.

The conformation of polymer chains remains highly

anisotropic in the entire range of volume fractions. For N ¼

2000;Lx ¼ 17;Rgk=Rg’ decreases from 18.4 to 4.00. For

N ¼ 1000;Lx ¼ 17; the weakest confinement in the present

study, Rgk=Rg’ decreases from 9.23 to 2.87. The dependence

of Rk on N; although only two chain lengths were examined

in the present study, also agrees with the scaling predictions.

The ratio of Rk for N ¼ 2000 to Rk for N ¼ 1000 in the

channel of Lx ¼ 17 is 2.1 in regime III and 1.5 in regime

V. The latter ratio agrees with Rk , N1=2:

Bird’s-eye view of snapshots of chains are shown in

Fig. 4 for chains of N ¼ 2000 in the channel of Lx ¼ 17: In

Fig. 2. Linear dimension of chains consisting of N monomers confined in a

channel and a slit of width d and the dimension of the same chains in bulk

solutions are schematically compared. The scales of both axes are

logarithmic. The characteristic slope of the power law in each section is

indicated adjacent to the plot.

Table 1

Dimensions of single chains in unconfined space

N R0 Rg0 R2
0=R

2
g0

100 16.17 6.428 6.325

200 24.56 9.763 6.327

500 42.29 16.86 6.294

1000 63.61 25.37 6.285

2000 95.81 38.24 6.277

4000 144.0 57.53 6.266

7000 201.2 80.29 6.280

10,000 248.2 99.04 6.281
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part a (f ¼ 0:00676; regime III), the chains are isolated

from each other. In part b (f ¼ 0:0473; regime IV), the

chains are bumped against their neighboring chains without

much overlap. Some are overlapped with neighbors, but the

overlapped section is just a small part of the space occupied

by a chain. There are no square cross sections that have

beads from three chains. Congestion is heavier in part c

(f ¼ 0:1521; regime V). Most of the chains are still not

much overlapped with neighbors, but some are intertwined

with other chains. With a further increase in f; the chains

become highly intertwined in part d (f ¼ 0:3379; regime

V), in accordance with the prediction of the scaling theory.

Fig. 5 shows the fraction fiði ¼ 1; 2;…Þ of square cross

sections in the channel that have beads from i chains. The

figure is for N ¼ 2000 in Lx ¼ 17: Empty cross sections

were excluded from the tally. The fractions were calculated

from a single shot of chain configurations, and therefore the

symbols are not on smooth curves. The four volume

fractions in Figs. 4a–d are indicated by the arrows. In

regime III, f1 ¼ 1 and fi ¼ 0 for i ¼ 2; 3;… All cross

sections contain only beads from one chain, if they have

beads. At around fp
ch; f2 starts to increase, but f3 remains

zero in regime IV. As the system enters regime V, f3 starts to

rise, followed by f4 at higher volume fractions. Even at the

highest f; fi is non-zero only up to i ¼ 6:

To examine the crossover from regime III to IV,

Rk=Rk0 is plotted in Fig. 6 as a function of f=fp
ch for all

combinations of N and Lx studied. Here, fp
ch was

estimated from fp
ch ¼ Nb3=ðRk0L2

xÞ; where the value of

Rk0 determined from the simulation for a single chain

was used. As f=fp
ch approaches one, all the data start to

decrease along a common straight line with a slope close

to 21, in agreement with Eq. (5). The data deviate

upward at higher volume fractions, as the system enters

regime V. The deviation occurs at a different f=fp
ch for

each combination of N and Lx; since the dependence of

fpp
ch on N and d are different from the one for fp

ch: For

strongly confined chains, especially for N ¼ 1000 in

channels of Lx ¼ 13 and N ¼ 2000 in Lx ¼ 17; the slope

in regime IV is slightly more negative. We also prepared

a plot of Rgk=Rgk0 as a function of f=fp
ch for all

combinations of N and Lx studied (not shown). The

data follow a single master curve in regimes III and IV.

The slope in regime IV is slightly more gradual than

21. The difference between the two parts is related to

the ratio of Rk and Rgk; which is examined below.

The nature of chain conformation can also be seen in

the plot of R2
k=R

2
gk: In regime III, the beads of a confined

chain occupy a rectangular space with a uniform density

Fig. 3. Longitudinal and lateral chain dimensions, Rk (closed squares), Rgk

(open squares), R’ (closed circles) and Rg’ (open circles), plotted as a

function of polymer volume fraction f; for N ¼ 2000; Lx ¼ 17: Three lines

have a slope of 0, 21, and 21/8. Three regimes of f; III through V, are

indicated above the bottom axis.

Fig. 4. Snapshot of chain conformations for chains of N ¼ 2000;Lx ¼ 17 at

four polymer volume fractions: (a) 0.00676, (b) 0.0473, (c) 0.152, and (d)

0.338. Some chains are drawn in black; others in gray. The numbers on

straight lines with arrows on the ends indicate the longitudinal lengths of

the channel section displayed. A square cross section is drawn in each part.

Fig. 5. Fraction fiði ¼ 1; 2;…Þ of square cross sections in a channel of

Lx ¼ 17 that have beads from i chains of N ¼ 2000: The i is indicated

adjacent to each curve. The arrows with ‘a’ through ‘d’ point to the four

conformations in Fig. 4. Three regimes of f; III through V, are also

indicated.
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along the channel axis [8,10]. It then appears natural to

expect that R2
k=R

2
gk is equal to 12 for a completely

extended chain in a sufficiently narrow pore. In

unconfined space, in contrast, the ratio is 6 if it is an

ideal chain, and 6.30 for an excluded-volume chain [22].

Before examining R2
k=R

2
gk for confined chains at different

volume fractions, we first look at the ratio for single chains

of different lengths in channels of different widths. Fig. 7

presents R2
k0=R

2
gk0 for these chains. All the points are along a

smooth master curve (not drawn). As the confinement

strength Rgk0=d increases, the ratio monotonically increases

from ,6.4 to 11.9. The change from a three-dimensional

random coil to a one-dimensional rod is evident in the

figure. We notice that an extremely strong confinement is

required ðRgk0=d ø 100Þ in order for the ratio to be close to

12. At Rgk0=d ¼ 3; for instance, R2
k0=R

2
gk0 ø 10; and there-

fore Rk0=d ø 9:5: It may appear that this Rk0=d is sufficiently

large, but the confined chains are not fully extended.

Fig. 8 shows the change in the ratio R2
k=R

2
gk as f increases

for N ¼ 2000;Lx ¼ 17 and N ¼ 1000;Lx ¼ 17: The ratio at

low concentrations is substantially smaller than 12, because

the confinement is not too strong, especially for N ¼

1000;Lx ¼ 17: The ratio is steady in regime III, but sharply

drops to a value close to 6 in regime IV, where cigars begin

to touch each other and squeeze against each other.

Although the cigars are not penetrating each other in regime

IV, the squeezing from both ends effectively changes the

chain conformation from an elongated rod to a random coil

that just fits in a narrow channel. It is also interesting to note

that the ratio is held unchanged at around 6.2 in regime

V. From Fig. 8, we can conclude that the change of the chain

conformation from a rod to a random coil is complete in

regime IV in which the longitudinal dimension decreases

as f21:

How about a plot of R2
k=R

2
gk as a function of Rgk=d? If

Rgk=d determines the conformation of the chain as it does in

dilute solutions, then the plot for different combinations of

N and Lx will be on the same master curve as the one

depicted in Fig. 7. Fig. 9 shows that it is not the case. The

decrease in R2
k=R

2
gk with a decreasing Rgk=d; which was

caused by an increasing f; is sharper than it is in Fig. 7.

With an increasing confinement strength, the drop shifts to a

greater Rgk=d; that is, the shift occurs when the chains are

more anisotropic. Here we see a difference in chain

statistics between polymer chains with its excluded volume

fully at work and polymer chains with excluded volume

shielded. When chains are congested in regimes IV and V,

their conformation is still anisotropic. Nevertheless, the

shielding randomizes the chain conformation. For isolated

chains, in contrast, randomness requires that the confine-

ment be weak.

Fig. 7. The ratio of the mean square end-to-end distance to the mean

square radius of gyration (longitudinal components) of a single chain in

the channel, plotted as a function of Rgk0=d: The legend shows the chain

length N:

Fig. 8. The ratio of the mean square end-to-end distance to the mean square

radius of gyration (longitudinal components), plotted as a function of f:

The upper plot is for N ¼ 2000; Lx ¼ 17; and the lower for N ¼ 1000;Lx ¼

17: The arrows indicate regime IV for the two systems.

Fig. 6. Root mean square of the end-to-end distance along the channel axis

reduced by its value for a single chain, plotted as a function of reduced

volume fraction, f=fp
ch: The legend shows N and Lx: Two lines have a slope

of 0 and 21.
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The crossover from regime IV to V is examined here in

another master plot. Translating Eq. (4) into the lattice

space, we estimate fpp
ch from fpp

ch ¼ ½Nðb=LxÞ
4�4=7: Applying

Eq. (6), we have Rpp
gk as Rpp

gk ø Rgk0ðRg0=dÞ
220=21: In Fig. 10,

Rgk=R
pp
gk thus calculated for different N and Lx is plotted as

a function of f=fpp
ch : All the data in f=fpp

ch . 0:4 lie along a

single master curve (not drawn). The master curve has a

slope close to 21 at f=fpp
ch , 0:6; and above that range the

slope changes gradually to about 21/8. The change is,

however, surprisingly slow. Because of the limited range of

confinement strength Rg0=d in the present study, we cannot

tell whether the transition will become more distinct with an

increasing Rg0=d:

We now compare the chain dimension in the confined

solution with that in the bulk solution. Part a of Fig. 11

compares Rgk for N ¼ 1000 in Lx ¼ 11; 13, and 17 with 321/2

of the radius of gyration Rg in the bulk solution of the same

f (solid line). The Rg in the bulk solution was calculated

using the empirical chain contraction formula obtained

earlier in the simulation study [17]. In the absence of

confinement or if the confinement is weak, Rgk would be

identical to the solid line. The figure also shows Rg’; which

would be identical to the solid line were it not for the

confinement. Part b of Fig. 11 compares the overall Rg;

where R2
g ¼ R2

gk þ 2R2
g’; with the radius of gyration in the

bulk solution of the same f (solid line).

In regimes III and IV, the plots of Rgk are located much

higher than the solid line is. They approach the solid line in

regime V, but there is still a gap. In contrast, Rg’ is smaller

than 321/2 of the bulk Rg; since Rg’ , d in the confined

solution. The overall Rg in the confined solution is larger

than it is in the bulk solution in dilute solutions, but becomes

smaller than the bulk value with an increasing f when Rgk

drops rapidly in regime IV. Although there is a difference in

the magnitude between the radii of gyration of chains in the

two spaces, the results in Fig. 11 agree with the schematic

drawing in Fig. 2. Similar results were observed for the

solutions confined to a slit [17]. Experimental studies by

Lal et al. also confirmed this phenomenon [20].

Our results on confined solutions can be extrapolated to a

melt confined in the channel. As long as the channel is not so

narrow as to bring the melt onto line BM in Fig. 1, the

Fig. 11. (a) Root-mean-square longitudinal (Rgk; open symbols) and lateral

(Rg’; closed symbols) components of radius of gyration for chains of length

N ¼ 1000 confined to a channel of wall-to-wall distance bð1 þ LxÞ; plotted

as a function of the polymer volume fraction f: The solid line is 321/2 of the

radius of gyration in unconfined solution. (b) Overall radius of gyration of

confined chains. The legend shows Lx: The solid line indicates the radius of

gyration in unconfined solution.

Fig. 9. The ratio of the mean square end-to-end distance to the mean square

radius of gyration (longitudinal components), plotted as a function of Rgk=d:

The legend shows N and Lx: The change in Rgk is caused by chain

contraction with an increasing polymer volume fraction.

Fig. 10. Root mean square radius of gyration along the channel axis reduced

by Rpp
gk; plotted as a function of reduced volume fraction, f=fpp

ch : The legend

shows N and Lx: Two lines have a slope of 21 and 21/8.
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overall dimension of chains confined to the channel will be

smaller compared with the one in the unconfined melt. The

chain is highly anisotropic, however, with the longitudinal

dimension maybe comparable with the bulk value, and the

lateral dimension close to the channel width.

Finally we take a look at R’ and Rg’: Figs. 3 and 11 have

already shown that R’ and Rg’ increase as f increases.

Fig. 12 shows R’=d and Rg’=d for all combinations of N and

Lx of the present simulation studies as a function of f=fp
ch:

In each of R’=d and Rg’=d; all the data collapse onto a single

master curve, except the data of Rg’=d for N ¼ 1000;Lx ¼

17 at high volume fractions. The slight downward deviation

for N ¼ 1000; Lx ¼ 17 is ascribed to a weak confinement at

these high volume fractions.

In contrast to Rk and Rgk that have three regimes of

volume fraction dependence, R’=d and Rg’=d have only two

regimes separated by fp
ch: At low volume fractions (regime

III), the collapse is a signature of strong confinement: R’=d

and Rg’=d are not being affected by N or d: The ratio

remains constant in this regime ðR’ ø d;Rg’ ø dÞ; con-

sistent with the scaling theory predictions. At f . fp
ch; the

chains continue to expand laterally, and the expansion is

again independent of N: These behaviors can be explained

as follows. At f , fp
ch; the monomer density profile

across the channel of 0 , x , d and 0 , y , d is close to

sin2ðpx=dÞsin2ðpy=dÞ [19]. Therefore, R’=d and Rg’=d are

independent of N or d: At f . fp
ch; the correlation length j

is smaller than d and continues to decrease as f increases.

When j ! d; the density profile is flat in the center and

drops to zero toward the walls. The thickness of the

depletion layer at the walls is ,j: This is why R’ and Rg’

increase in regimes IV and V. The master curve (not drawn)

in Fig. 12 indicates that j=d is not a function of N; but

depends on f=fp
ch only in the whole range of f: The only

visible regime boundary is fp
ch : fpp

ch applies to the

longitudinal direction only.

Simple calculation gives R’ and Rg’ of ideal chains in a

strong confinement: R’=d ¼ ð1=2 2 ð4=p2ÞÞ1=2 ø 0:308;

Rg’=d ¼ ð1=12 2 ð1=2p2ÞÞ1=2 ø 0:181: In the limit of the

weak confinement, the numbers are to 621/2 ø 0.408 and

1221/2 ø 0.289, respectively. In the melt, j ø b; and

therefore R’=d and Rg’=d should be close to those in the

weak confinement. Fig. 12 indicates that excluded-volume

chains at low volume fractions exhibit larger values of R’=d

and Rg’=d than those for the ideal chains. With an increasing

f; R’=d and Rg’=d approach those expected for the weak

confinement in the channel. As we did for the longitudinal

dimensions, we plotted R2
’=R

2
g’ (not shown). The ratio is

around 2.8 at low volume fractions, close to 2.90, the value

of ideal chains, and decreases to 2.3 at the highest f studied.

As for the longitudinal counterpart, the ratio is insensitive to

the excluded volume.

5. Conclusions

The present lattice Monte Carlo simulation study shows

how polymer chains strongly confined to narrow channels

contract upon increasing concentration beyond the chain

overlap. We have observed the chain contraction typical of

one-dimensional semidilute solutions, namely Rk , f21; in

regime IV and then a crossover to the contraction typical of

three-dimensional semidilute bulk solutions, namely, Rk ,
f21=8; in regime V. In regime IV, the chain conformation

changes from that of a cigar to that of a random coil. The

chain in regime V is still anisotropic, but the chain statistics

along the longitudinal direction is similar to that of an ideal

chain in which the excluded volume interaction is screened.

It was also in regime IV that the overall dimension of the

confined chains becomes smaller than the bulk value with an

increasing f: A visual verification of ‘touching cigars’ to

‘intertwined cigars’ was also presented. Our results agree

with the predictions of the scaling theory.

References

[1] Bezrukov SM, Vodyanoy I, Brutyan RA, Kasianowicz JJ. Macro-

molecules 1996;29:8517.

[2] Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc Natl Acad

Sci USA 1996;93:13770.

[3] Movileanu L, Bayley H. Proc Natl Acad Sci USA 2001;98:10137.

[4] Haller W. Nature 1965;206:693.

[5] Luo M, Teraoka I. Macromolecules 1996;29:4226.

[6] Xu Y, Teraoka I, Senak L, Wu C-S. Polymer 1999;40:7359.

[7] Lee D, Teraoka I, Fujiwara T, Kimura Y. J Chromatogr A 2002;966:

41.

[8] Daoud M, de Gennes PG. J Phys (Paris) 1977;38:85.

[9] Brochard F, de Gennes PG. J Phys (Paris) 1979;40:L399.

[10] de Gennes PG. Scaling concepts in polymer physics. Ithaca, NY:

Cornell University Press; 1979.

[11] Lal J, Sinha S, Auvray LJ. J Phys II (France) 1997;7:1597.

[12] Kremer K, Binder K. J Chem Phys 1984;81:6381.

[13] van Giessen AE, Szleifer I. J Chem Phys 1995;102:9069.

Fig. 12. Reduced lateral chain dimensions, R’=d and Rg’=d; plotted as a

function of reduced volume fraction, f=fp
ch: The legend shows N and Lx:

I. Teraoka, Y. Wang / Polymer 45 (2004) 3835–38433842



[14] Sotta P, Lesne A, Victor JM. J Chem Phys 2000;112:1565.

[15] Sheng YJ, Wang MC. J Chem Phys 2001;114:4724.

[16] Wang Y, Teraoka I. Macromolecules 2000;33:3478.

[17] Teraoka I, Wang Y. Macromolecules 2000;33:6901.

[18] Cifra P, Bleha T. Makromol Chem Theor Simul 2000;9:555.

[19] Cifra P, Teraoka I. Polymer 2002;43:2409.

[20] van Vliet JH, Luyten MC, ten Brinke G. Macromolecules 1992;25:

3802.

[21] Metropolis N, Rosenbluth W, Rosenbluth MN, Teller AH, Teller E.

J Chem Phys 1953;21:1087.

[22] des Cloizeaux J, Jannink G. Polymers in solution: their modelling and

structure. Oxford: Oxford University Press; 1989.

I. Teraoka, Y. Wang / Polymer 45 (2004) 3835–3843 3843


	Computer simulation studies on overlapping polymer chains confined in narrow channels
	Introduction
	Scaling theory of polymer solutions confined in channels
	Simulation procedure
	Results and discussions
	Conclusions
	References


